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Adaptive Bandwidth Choice for Kernel Regression

R. L. Eubank and William R. Schucany*

SUMMARY

A data-based procedure is introduced for local bandwidth selection for kernel estimation of a

regression function at a point. The estimated bandwidth is shown to be consistent and asymptotically

normal as an estimator of the (asymptotic) optimal value for minimum mean square estimation. The

rate of convergence is identical to that of plug-in bandwidth estimators. The proposed method has the

practical advantage that it reduces the need for a priori values and does not require pilot estimates of

the regression function, optimization of estimated objective functions or resampling. A small Monte

Carlo study is used to examine the behavior of the new bandwidth estimator in a variety of situations.

The resulting finite-sample mean square errors of the corresponding curve estimates are generally found

to be less than or equal to those of an idealized plug-in estimator.
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1. INTRODUCTION

Bandwidth selection occupies an important role in the literature of nonparametric regression

(cf. Marron, 1989, or Eubank, 1988, for references). With few exceptions, the primary emphasis of this

work has been on the selection of globally optimal bandwidths. However, it is known (see, e.g., Miller,

1988, and Staniswalis, 1989) that gains in estimator performance can be realized by optimizing the

bandwidth locally rather than on a global basis. Thus, in this paper we present a simple, effective

method for selecting local bandwidths in kernel regression.

Consider the nonparametric regression model where responses Yl,..., Y- are observed following

the model

Yj = m(i,) + i, i= 1,...,n. (1.1)

Here the ci are independent, identically distributed, random variables with zero mean and finite

variance o2, the i, satisfy 0 < t1 < -.. < t4 < 1 and m is an unknown function. Without having to

assume more about m than certain smoothness conditions, we wish to estimate m at some fixed

argument 1.

There are many good estimators for m(t). Examples of these can be found in Eubank(1988)

and Muiler(1988). In particular, the Priestley-Chao kernel estimator of m at t is

where K is a kernel function, h > 0 is the bandwidth or smoothing parameter and t = 0. The kernel K

is assumed to be continuously differentiable, symmetric with support on -1, 1] and of order p in the

sense that

1, j=0,
=K(z)dz 0, j = l, ... p-1, (1.3)

kp 40, j=p.
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To use rhl, in practice one requires choices for both A and K. Discussions of methods for

selecting K can be found in M-aller(1988). We will concentrate here on the problem of selecting h. The

value used for h will be allowed to depend on the point of estimation t. Our goal is to find a good

choice of h for each vdlue of i in the sense of making the mean squared error (mse) of estimation as

small as possible.

There are several data adaptive local bandwidth selection techniques that have been proposed

in the literature. Modifications of squared-error cross validation for consistent estimation of optimal

local smoothing have been introduced by Hall and Schucany (1989) and Vieu (1990). An alternative

resampling approach that uses the bootstrap to estimate the mse of Yhhj() is described by Hairdle and

Bowman (1988). Two other approaches to estimating the mse that use pilot estimates of m(i) have

been studied by MUller (1985) and Staniswalis (1989). All of these algorithms involve a search for a

local minimum of an estimated mse and require the specification of some other tuning parameter, e.g.,

a global bandwidth for a pilot estimate of m. In contrast, the technique that we propose essentially

does not require such initial values and there is no search required for the minima of a cross-validation

or estimated mse function.

Our approach to local bandwidth selection stems from some simple asymptotic analysis. Let

Var(h) = Var(lhh(t)) and Bias(h) = Erhh(1) - M(t). Then, standard Taylor expansions reveal that if m

E Ce[0, 1], the mean squared error mse[nih(t)] = E(thA(1) - M(t)) 2 can be written as

mse[fnh(i) = Var(h) + Bsas2(h)

- + [hPkm2 + + (1.4)

where Q - f, JQ(z)dz and kp ' zPK(z)dz. Minimization of (1.4) with respect to A yields

= [P 0'2Q f , l1/(2p+1) (1.5)t: - _pn(k, - €oj/P!) -
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if we ignore higher order terms. By substituting (1.5) into (1.4) we then obtain

Var(h) = 2pBias2(14), (1.6)

again neglecting higher order terms. More general results for integrated mse and derivative estimation

can be found in Gasser, Mailer, K6hler, Molinari and Prader (1984) and Miller(1988).

The basic proposal here is to capitalize on the balance between variance and bias present in

(1.6). We first estimate both the variance and bias over a grid of fixed h values. For large n we should

have for any fixed h that Var(h) .- A/nh and Bias2 (h) .- Bh2p for constants A and B. Thus, given

several estimated values of the variance and bias one can obtain estimates A and B of A and B (e.g.,

by least squares) and then solve (1.6) to find the adaptive bandwidth choice

= 1 /(2p+) (1.)

In Section 3 we will show that 4, is consistent and asymptotically normal as an estimator of h and

attains the same convergence rate as plug-in estimators.

The remainder of the paper is organized as follows. In the next section we provide details

concerning the computation of our bandwidth estimator. Then, in Section 3, asymptotic properties of

A, are described. The findings of a small simulation experiment are presented in Section 4. Finally,

some concluding remarks are collected in Section 5.
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2. ADAPTIVE BANDWIDTHS

In this section we give a detailed description of our method for local bandwidth selection.

Throughout the remainder of the paper we assume that the design is equally spaced, i.e., ii = i/n. It

should be emphasized however that this is merely for simplicity and the approach extends directly to

more general designs.

Two essential ingredients of the proposed method are estimators of Var(h) and Bias(h). The

exact variance of vh1() is

2'1Var(h) = a ~ K2Q.E) (2.1)
2h2 9.j=1

Thus, to estimate the variance we need only estimate a2. For this purpose we use the estimator
proposed by Gasser, Sroka and Jennen-Steinmetz(1986) which has the form &2 = -E [Ys - 2Y,

9-=2

+ Y,+12/6 for an equispaced design. Consequently, Var(h) can be easily estimated for any given value

of h by replacing o,2 by &2 in (2.1). We denote the result by Var(h).

It remains to estimate Btas(h) for which purpose we use

Bias(h) = K;(2)1, (2.2)

where KG(z) = K(,) - K,+ 2(z) and Kp+ 2 is any (p + 2)th order kernel. In Section 4 we specialize to p

= 2 and use the 4th order kernel studied by Schucany(1989): K,(z) = [K(z) - c3 K(cz)]/(l-c2) , with c

= .671 and K(z) = !(1 -?), It _1.

A heuristic motivation for the use of (2.2) as an estimator of Bias(h) can be derived from the

asymptotic form (1.4). For large n and a kernel of order v we will have Erht(t) - m(t) +

ha.'kvm(V)(t)/v! . Taking the difference of such asymptotic expressions for v, = p and p + 2 'eaves the
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lead term kPkpm (P)(i)/p! as required. In actuality m need not have p + 2 derivatives for Bias to be

effective but requires only slightly more smoothness than membership in C"[0, 1] (see Section 3 for

more details). Our approach is closely related to twicing for estimation of bias (Stuetzle and Mittal,

1979) and can, in fact, be shown to include twicing as a special case in an asymptotic sense.

To obtain the estimators A and B in (1.7) we evaluate (2.1) and (2.2) over a grid of

predetermined bandwidths, h, ,..., h,. In practice the number in this grid may be reasonably small and

we have used k - 7 successfully. Thus, at a fixed 9 one obtains k estimates from (2.1), which we denote

by (v1 ... , vk) = (Var(hj) .... Var(h)) and, by squaring the values from (2.2), (b2 .. , b2) -

(Btas2 (h1 ) ,..., Btas2(Ak)). These two sets of estimators are then fit to their simple asymptotic

expressions as functions of h, namely A/nh and Bh 4', via ordinary least squares. The resulting estimates

of A and B are

n Vj1/k)h h) (2.3)

and

k- 2 2p b k) h).. (2.4)

By substituting (2.3) and (2.4) into (1.7) we obtain our estimator h, of h*.

Figure 1 illustrates the idea. It displays fits to the vj and 62 for a specific simulated example

with p = 2, m(L) = sin(t) at i = .50, o = .015 and n = 100. Actually the Bias curve is multiplied

by 4 so that the intersection of the two curves occurs at the desired value, 4,, given by (1.7). The

maximum bandwidth in the grid of values has been chosen to be the largest permissable without

encountering boundary bias. This implies maz/a, = .671mar{i - t, t. - i}. The minimum bandwidth

is large enough for a sufficient number of points to be in the window. We have set mi nh i = 6mi n(i i-
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ii.1). This lower endpoint is not critical to the stability of the algorithm; the variance estimates in (2.1)

use all of the data regardless of the magnitude of h. The bias estimates do become erratic when too

few points get nonzero weights, but the curve Bh 4 is forced through the origin and thus an errant

positive value at one small h has no noticeable impact on the fit. Design considerations for efficient

estimation of A and B produce two designs that are skewed in opposite directions. To balance these

and have stable estimates a reasonable compromise appears to be equally spaced values of 'a1 . On the

other hand, estimating B is more difficult than estimating A. Consequently, a grid of values more

concentrated toward the right might prove beneficial, although we have not experimented with this to

any great extent.

3. ASYMPTOTIC PROPERTIES

In this section we state and prove our principal asymptotic results. Recall that the data values

are equally spaced and the errors are independent with common variance e-2 . We will require an

assumption of Lipshitz continuity for m~ . By this we mean the following: a function f is said to be

Lipshitz continuous of order 0 < -f < I if there exists a finite constant M such that sup IAs) - Wt)[ <

..13ils - 1 
:At

Theorem. Assume that m(p) is Lipshitz continuous of order 0 < y < I and the hi satisify hi  ,n - a

for 0< a< I and 0 < C, < ... < Ck < oo. Then if 1/(2(p + -y) + 1) < cr < 1/2,

n (2P+l)a)/ 2 [h,/* 1] A N(O, 46 2/B(2p+1)2) , where 82 =

o2 -Z(cc j) - I Kh(u/C)KG(uICj)du/(ZG P)2 and B is the coefficient for the dominant
i=12-- -1 1=1

term in the squared bias that is estimated by (2.5).

The Theorem states, among other things, that i,/h* - I = Op( .(l(2 p+l)a)/2) Thus, /Ih*
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converges to 1 in probability provided that a < 1/(2p + 1) . The rate of convergence is quite slow for

a close to 1/(2p + 1) but can be much faster if 7 is large and a is selected to be emall. These rates

may be inherent to the local bandwidth selection problem (cf. Staniswalis, 1989, and the Corollary

below).

It is interesting to compare the rates given by the Theorem with those for global bandwidth

estimators. In the case of global bandwidth estimates obtained by cross-validation, it is known that

when p = 2 the ratio of the bandwidth estimate to the optimal bandwidth will converge to one at the

rate n-1/10, regardless of the value of -t (cf. Hardle, Hall and Marron, 1988, and Park and Marron,

1990). In contrast, by choosing a appropriately, we can always make h,/h* converge faster than

n-/1o if -t is sufficiently close to one.

Of course the Theorem establishes much more than just rates of convergence. The asymptotic

normality result may be useful for constructing confidence intervals for h*. Discussion of this point in a

related setting can be found in Hirdle, Hall and Marron(1988).

The conditions on the range of a restrict the h, from being either too small or too large. The

lower bound is needed to insure that n (-(2p+ )0)/ 2[h - B] is asymptotically normal. This property of

b is what drives the proof of the Theorem. An essentially identical condition is needed by

Staniswalis(1989) for the bandwidth of a pilot estimator of m(p ) that was used to construct her

estimator of the optimal local bandwidth.

Proof of Theorem. To establish the Theorem two lemmas are required that we now state and prove.

Lemma 1. nhVar(h) A = Op((nh)- ) + Op(n- 2 ) if nh - oc as n - oc.

Proof. The proof follows from standard arguments (cf. Eubank, 1988, Lemma 4.1) and the fact that &2

a 2 = Op(n- / 2) (cf. Gasser, et al, 1986).
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Lemma 2. Let B = D2, bl, = Baas(h,)/hj and set 1) =(bk, .... , Dh,)' Then, if is Lipshitz

continuous of order -, hi - Cin -c for 0 < C, < .. < C& < oo and a > l/( 2 (p + y) + 1) ,

n(1-(2p+)*)/2 [b - D1] d Nk(0, 0' 2 E) with 1 a k-vector of all unit elements and E a kxk matrix

having typical element =i J KG(u/ Cj)KG (u/ Cj)du/( CCj) ' 1 .
-1

Proof. Using Theorem 4.2 of Mu]ler(1988) and standard arguments one can show that

n(1-(2p+l)")/2 a'b - ED] converges in distribution to a zero mean normal random variable with

variance a',a for any vector a such that this quantity is nonzero. Since Eb - D1 is O(n- Ya), as a

consequence of our assumptions about m, the lemma now follows from our conditions on a and the

definition of asymptotic normality (cf. Serfling, 1980, pg. 21). 0

We are now ready to establish the Theorem. Our estimator of A is A =
k k

n("Var(hj)/Cj]/n'ZC2 = A + Op(n"- 1 2 ), by Lemma 1 and our assumptions on the hi. Also,
j=1 j=1

from Lemma 2 and results on transformations of asymptotically normal random variables we have

n (1-(2P+l);/2[b - B] d N(0, 4B02).

The Theorem can now be established by writing

n(1-(2P+l)a)/2f A,/A* - 1) = n(l-(2p+)a)/2 04B/ A] 1/(2p+)- 1}

n n(-(2p+))/2{[(1 + Op(na- 1 2))/(l + (- B)/B)]/ ( 2 p + i ) 
- 1}

= n (n-( 2
p+l)a)/2 (b - B)/B(2p + 1) + Op(n - 1 /2 ) + Op(n-(2p-I)a/2

Applying our asymptotic normality result for B completes the proof. 0

As a final comment we note that similar techniques to those used in proving the Theorem can

be used to establish rates of convergence for a plug-in estimator of h* such as A =IPI
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& 2Q/nkp mh () (21 ] / (2

p
+

, where h,) (t) is a kernel estimator of m()) with bandwidth 6 and kernel

KD. Specifically, we have the following.

Corollary. Assume that m (p ) is Lipshitz continuous of order 0 < y < I and that 6 satisifies b , n- a
1

for 1/( 2 (p + -) + 1) < a<1/2. Then, n (-(2p+l)*)/2 [Apl/h* - I] _. N(0, 4c2J KD(u)du/m(P)(t)2).

-4

4. FINITE SAMPLE PERFORMANCE

To demonstrate the implementation and investigate the stability of the algorithm for 4a1

several example problems were generated on the IBM 3081D computer at Southern Methodist

University. A Fortran program using IMSL subroutines computed observations Yl,..., Y, for n = 50,

100, 200, 400 and 1000 from (1.1) with m(t) = sn(t). The disturbances were obtained by generating

standard normal random deviates that were then rescaled to have standard deviations a = .005 and

.05. At i = .5 the true value of interest is m(.5) = .479.

The estimator h, was computed for each sample using k = 7 and K4 (z) = [K(:) - c3 K(cz)]/(1-

c2 ) , with c = .671 and K(.) = ( - z2), I:i < 1. Also computed were two "competing" bandwidths:
4

namely, the true asymptotically optimal bandwidth h* from (1.5) and an optimal plug-in type

estimator, h1P. The estimator hP, is obtained by using the estimator &2 in place of a2 and a kernel

estimator for m"(1) in (1.5). Although this estimator is data dependent, the bandwidth, b, that is used

for in4'(t) has been set at its asymptotically optimal value. More specifically, rh"'(t)

S1 I K.( Y,, where K*(z) = 105(-5z' + 6z2 - 1)/16, the optimal kernel of order (2, 4) from

Gasser, Miller and Mammitsch (1985), and b = 5GQ*/4n(k m (1)/4!) with Q* = f IK2(:)d:

and k_ - f' Z4 K*(z)dz.

Average values of the estimated bandwidths, h, and hip,' along with their Monte Carlo standard

deviations were calculated for M = 1000 replications. Table 1 summarizes the results. Examination of
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Table I

Summary of Average Bandwidths over M = 1000

Monte Carlo Repetitions (Standard Deviations in parentheses)

Asymptotically Adaptive Ideal Correlation

a n Optimal, h Choice, kt Plug-In, i 1Pl r(h hdP)

.005 50 .1267 .1258 .1206 .88

(.0080) (.0095)

100 .1103 .1104 .1095 .87

(.0048) (.0062)

200 .0960 .0962 .0967 .85

(.0029) (.0037)

400 .0836 .0839 .0838 .87

(.0018) (.0022)

1000 .0696 .0699 .0698 .86

(.0009) (.0011)

.05 50 .3182 .2914 .2719 .67

(.035) (.049)

100 .2770 .2772 .2715 .67

(.037) (.053)

200 .2412 .2467 .2551 .66

(.032) (.054)

400 .2099 .2125 .2220 .70

(.020) (.046)

1000 .1748 .1764 .1815 .71

(.010) (.028)
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the values in the table reveals that the proposed bandwidth estimator is comparable to the ideal plug-

in estimator for estimation of h* but tends to be more stable. The greater variability of hAp, is

evidently due to estimating m"(i) using only a single bandwidth. Even though b is set at the "ideal"

asymptotically optimal value for rih'(9), ii appears to gain stability from the smoothing afforded by

the fit across several bandwidths used for B and A.

The rate of convergence of hi, as measured by the decrease in its standard deviation as n

increases, appears to be better than that predicted for cross validation. The asymptotics begin to take

effect more slowly when the noise is greater. In other words, at a = .05, the standard deviation of ht

does not begin its characteristic decline until after n = 200. This delay is still more pronounced for the

plug-in estimator.

The final column of the table contains the Monte Carlo correlation coefficient between A, and

i Pl over the 1000 pairs of estimated bandwidths. The strong correlation should not be surprising since

both techniques are trying to estimate the same unknown ingredients of hA in (1.5). The correlation

appears to be very weakly dependent upon n and a decreasing function of a.

It is important to note that the primary interest is not in estimating h'. The main objective is

to have some practical method for local bandwidth selection that leads to small finite-sample mse for

rhh(i). Table 2 presents the average of M = 1000 squared errors for the same example and the three

bandwidths covered in Table 1. In the low noise case a = .005 the two estimated bandwidths yield

about the same results. However, when a is larger the adaptive bandwidth iA is 5-9% more efficient

than the ideal plug-in rule. The adaptive rule is not competitive with the fixed bandwidth, h, but, of

course, such a quantity is not available in practice.

It is also of interest to examine the rate of decay of the sample mse sequence as a function of n.

We expect this sequence to decay like n-4/ if h t is being estimated correctly. Figure 2 displays the

mse's on a log-log scale for the asymptotically optimal and adaptive bandwidths when o, = .05. The

slope of -4/5 is apparent and the relative efficiency of the adaptive procedure is improving with
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Table 2

Comparison of the Effects of Data-Based Bandwidths

on Mean-Square Errors of Estimation

- Asymptotically Adaptive Ideal

n Optimal, A, Choice, hi Plug-In, k1PI

.005 50 .0247 .0467 .0556

100 .0344 .0196 .0203

200 .0097 .0101 .0101

400 .0052 .0056 .0057

1000 .0028 .0028 .0029

.05 50 1.2523 1.4233 1.5502

100 .6675 .7324 .7721

200 .3716 .4002 .4232

400 .2150 .2341 .2513

1000 .1102 .1165 .1222

Entries are x rse [i(t; h)j with three different rules for h.
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increasing sample size.

To further illustrate the utility of our proposed rule, another simulated data has been used to
produce a curve estimate in Figure 3. In this example m(i) is estimated at each 9 using thi, (i). The

function being estimated is m(t) = 4.26(e - 3 "2 5 t - 4e - 6
.61 + 3e - 9 7 5 t ) which has been used in

numerous studies, e.g., Staniswalis (1989). To eliminate the complication of the boundary effects

realizations of Yj for t. in the interval (-1, 2) are used in producing the estimates in [0, 1]. The scale

on the left is for the Y, points, the solid line represents m(f) and the dashed line corresponds to the

estimator of m based on our local bandwidth estimates. Superimposed on this graph are curves for the

local bandwidths. The scale on the right is for values of k* (solid line) and 4, (dotted line). The

estimated bandwidths perform as one would hope by increasing and decreasing according to the

curvature of m. The spikes in the asymptotically optimal bandwidths correspond to values of m"(t)

near zero. That the peaks in hi occur in different places is simply an indication that the finite sample

bias has a (estimated) minimum other than where the dominant term vanishes.

5. CONCLUSIONS

In this paper we have proposed a new method for local bandwidth selection. This technique has

been shown to be practical and perform well in finite samples. The asymptotic properties of the

bandwidth estimator have been derived and it was found to be both consistent and asymptotically

normal.

An important question that is now under study is how to adapt our bandwidth selection

technique for use when I is near the boundary region. More research is also needed on how to best

choose the grid of bandwidths used with the algorithm. Experimentation with different grids suggests

that it may improve the procedure to use a larger minimum for the hi . A different bias estimator may

also prove useful in this regard. The possibility exists, for example, of estimating B with a generalized
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or robust alternative to ordinary least squares. Such an approach has the potential to alleviate effects

produced by the grid of bandwidths being either too small (so that the bias estimates are very noisy) or

too large (causing extrapolation beyond the range of adequacy of the Taylor approximation). Although

these fine tuning issues remain open for study, we believe that the initial version of the algorithm

presented here is sufficient to demonstrate its potential superiority over plug-in rules.

To conclude, we note that the basic procedure outlined above can be extended in a number of

directions. For example, a similar adaptive approach may be developed for local bandwith selection in

probability density estimation. The variance would, of course, need to be estimated differently in this

setting.
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